Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci China Life Sci ; 66(9): 2006-2019, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340176

RESUMEN

Iron is an important micronutrient that plays a vital role in host defenses and bacterial pathogenicity. As iron treatments increase the risk of infection by stimulating the growth and virulence of bacterial pathogens, their roles in anti-infection immunity have frequently been underestimated. To estimate whether adequate dietary iron intake would help defend against pathogenic bacterial infection, mice were fed iron-deficient (2 mg kg-1 feed), iron-sufficient (35 mg kg-1 feed), or iron-enriched diet (350 mg kg-1 feed) for 12 weeks, followed by oral infection with Salmonella typhimurium. Our results revealed that dietary iron intake improved mucus layer function and decelerated the invasion of the pathogenic bacteria, Salmonella typhimurium. Positive correlations between serum iron and the number of goblet cells and mucin2 were found in response to total iron intake in mice. Unabsorbed iron in the intestinal tract affected the gut microbiota composition, and the abundance of Bacteroidales, family Muribaculaceae, was positively correlated with their mucin2 expression. However, the results from antibiotic-treated mice showed that the dietary iron-regulated mucin layer function was not microbial-dependent. Furthermore, in vitro studies revealed that ferric citrate directly induced mucin2 expression and promoted the proliferation of goblet cells in both ileal and colonic organoids. Thus, dietary iron intake improves serum iron levels, regulates goblet cell regeneration and mucin layer function, and plays a positive role in the prevention of pathogenic bacteria.


Asunto(s)
Células Caliciformes , Hierro de la Dieta , Animales , Ratones , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Células Caliciformes/patología , Hierro de la Dieta/metabolismo , Mucosa Intestinal/metabolismo , Salmonella typhimurium/metabolismo , Mucinas/metabolismo , Hierro/metabolismo , Bacterias/metabolismo
2.
Biomed Pharmacother ; 144: 112253, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607106

RESUMEN

Iron supplementation is necessary for the treatment of anemia, one of the most frequent complications in inflammatory bowel disease (IBD). However, oral iron supplementation leads to an exacerbation of intestinal inflammation. Gut barrier plays a key role in the pathogenesis of IBD. The aim of this study was to characterize the interrelationship between systemic iron, intestinal barrier and the development of intestinal inflammation in a dextran sulfate sodium (DSS) induced experimental colitis mice model. We found that DSS-treated mice developed severe inflammation of colon, but became much healthy when intraperitoneal injection with iron. Iron supplementation alleviated colonic and systemic inflammation by lower histological scores, restorative morphology of colonic villi, and reduced expression of pro-inflammatory cytokines. Moreover, intraperitoneal supplementation of iron enhanced intestinal barrier function by upregulating the colonic expressions of tight junction proteins, restoring intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and increasing mucous secretion of goblet cells in the colon. High-throughput sequencing of fecal 16 S rRNA showed that iron injection significantly increased the relative abundance of Bacteroidetes, which was suppressed in the gut microbiota of DSS-induced colitis mice. These results provided evidences supporting the protective effects of systemic iron repletion by intraperitoneal injection of iron on intestinal barrier functions. The finding highlights a novel approach for the treatment of IBD with iron injection therapy.


Asunto(s)
Colitis/tratamiento farmacológico , Colon/efectos de los fármacos , Suplementos Dietéticos , Células Caliciformes/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Complejo Hierro-Dextran/administración & dosificación , Proteínas de Uniones Estrechas/metabolismo , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal/efectos de los fármacos , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Inyecciones Intraperitoneales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones Endogámicos C57BL , Permeabilidad , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/microbiología , Regulación hacia Arriba
3.
Front Immunol ; 12: 636198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841417

RESUMEN

Food allergy is an emerging epidemic, and the underlying mechanisms are not well defined partly due to the lack of robust adjuvant free experimental models of dietary antigen sensitization. As housing mice at thermoneutrality (Tn) - the temperature of metabolic homeostasis (26-30°C) - has been shown to improve modeling various human diseases involved in inflammation, we tested the impact of Tn housing on an experimental model of food sensitization. Here we demonstrate that WT BALB/c mice housed under standard temperature (18-20°C, Ts) conditions translocated the luminal antigens in the small intestine (SI) across the epithelium via goblet cell antigen passages (GAPs). In contrast, food allergy sensitive Il4raF709 mice housed under standard temperature conditions translocated the luminal antigens in the SI across the epithelium via secretory antigen passages (SAPs). Activation of SI antigen passages and oral challenge of Il4raF709 mice with egg allergens at standard temperature predisposed Il4raF709 mice to develop an anaphylactic reaction. Housing Il4raF709 mice at Tn altered systemic type 2 cytokine, IL-4, and the landscape of SI antigen passage patterning (villus and crypt involvement). Activation of SI antigen passages and oral challenge of Il4raF709 mice with egg antigen under Tn conditions led to the robust induction of egg-specific IgE and development of food-induced mast cell activation and hypovolemic shock. Similarly, Tn housing of WT BALB/c mice altered the cellular patterning of SI antigen passage (GAPs to SAPs). Activation of SI antigen passages and the oral challenge of WT BALB/c mice with egg antigen led to systemic reactivity to egg and mast cell activation. Together these data demonstrate that Tn housing alters antigen passage cellular patterning and landscape, and concurrent oral exposure of egg antigens and SAP activation is sufficient to induce oral antigen sensitization.


Asunto(s)
Alérgenos/metabolismo , Anafilaxia/metabolismo , Hipersensibilidad al Huevo/metabolismo , Proteínas del Huevo/metabolismo , Vivienda para Animales , Intestino Delgado/metabolismo , Temperatura , Administración Oral , Alérgenos/administración & dosificación , Alérgenos/inmunología , Anafilaxia/inmunología , Anafilaxia/microbiología , Animales , Modelos Animales de Enfermedad , Hipersensibilidad al Huevo/inmunología , Hipersensibilidad al Huevo/microbiología , Proteínas del Huevo/administración & dosificación , Proteínas del Huevo/inmunología , Microbioma Gastrointestinal , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones Endogámicos BALB C , Ratones Noqueados , Permeabilidad , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
4.
Front Immunol ; 11: 564953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281812

RESUMEN

A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.


Asunto(s)
Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Moco/metabolismo , Polisacárido Liasas/metabolismo , Secretagogos/metabolismo , Serina Endopeptidasas/metabolismo , Calcio/metabolismo , Señalización del Calcio , Dominio Catalítico , Línea Celular , Infecciones por Escherichia coli/microbiología , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucina 5AC/metabolismo , Mucina 2/metabolismo
5.
J Agric Food Chem ; 68(41): 11402-11411, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32864960

RESUMEN

The colonic mucus barrier serves as a primary defense against enteric pathogens; destruction of this mucus layer has been observed in ulcerative colitis patients. This study aims to investigate the possibility of rebuilding the colon mucus layer through puerarin supplementation, which can stimulate mucin secretion and goblet cells differentiation. After puerarin supplementation, the thickness of colon mucus layer was increased and the permeability was reduced. The erosion of intestinal epithelium by bacteria was blocked, and the loss of epithelial integrity was alleviated. Puerarin also altered the composition of mucin-utilizing bacteria, which influenced the mucus permeability. Levels of short-chain fatty acids (SCFAs) were increased after puerarin supplementation, which as a direct source of energy for the proliferation of epithelia and goblet cells. This study demonstrated that enhancement of mucin secretion to relieve ulcerative colitis (UC) by puerarin supplementation is feasible, and the regulation of mucin-utilizing bacteria and the increased levels of SCFAs may be the main reasons.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Isoflavonas/administración & dosificación , Mucinas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Femenino , Microbioma Gastrointestinal , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucosa Intestinal/microbiología , Moco/metabolismo , Moco/microbiología , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Dis Model Mech ; 13(8)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32753526

RESUMEN

Prematurity and enteral feedings are major risk factors for intestinal injury leading to necrotizing enterocolitis (NEC). An immature digestive system can lead to maldigestion of macronutrients and increased vulnerability to intestinal injury. The aim of this study was to test in neonatal mice the effect of maltodextrin, a complex carbohydrate, on the risk of intestinal injury. The goal was to develop a robust and highly reproducible murine model of intestinal injury that allows insight into the pathogenesis and therapeutic interventions of nutrient-driven intestinal injury. Five- to 6-day-old C57BL/6 mice were assigned to the following groups: dam fed (D); D+hypoxia+Klebsiella pneumoniae; maltodextrin-dominant human infant formula (M) only; M+hypoxia; and M+hypoxia+K. pneumoniae. The mice in all M groups were gavage fed five times a day for 4 days. Mice were exposed to hypoxia twice a day for 10 min prior to the first and last feedings, and K. pneumoniae was added to feedings as per group assignment. Mice in all M groups demonstrated reduced body weight, increased small intestinal dilatation and increased intestinal injury scores. Maltodextrin-dominant infant formula with hypoxia led to intestinal injury in neonatal mice accompanied by loss of villi, increased MUC2 production, altered expression of tight junction proteins, enhanced intestinal permeability, increased cell death and higher levels of intestinal inflammatory mediators. This robust and highly reproducible model allows for further interrogation of the effects of nutrients on pathogenic factors leading to intestinal injury and NEC in preterm infants.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Enterocolitis Necrotizante/inducido químicamente , Mucosa Intestinal , Intestino Delgado , Polisacáridos , Animales , Animales Recién Nacidos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/patología , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Células Caliciformes/patología , Hipoxia/complicaciones , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Klebsiella pneumoniae/patogenicidad , Ratones Endogámicos C57BL , Microvellosidades/patología , Mucina 2/metabolismo , Permeabilidad , Proteínas de Uniones Estrechas/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(35): 21519-21526, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817517

RESUMEN

The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.


Asunto(s)
Células Caliciformes/efectos de los fármacos , Células Caliciformes/microbiología , Indoles/farmacología , Interleucina-10/metabolismo , Microbiota/fisiología , Receptores de Hidrocarburo de Aril/metabolismo , Envejecimiento/metabolismo , Animales , Bacterias/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Células Caliciformes/citología , Células Caliciformes/metabolismo , Interleucina-10/biosíntesis , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Moco/metabolismo , Transducción de Señal , Interleucina-22
8.
J Fish Dis ; 43(10): 1249-1258, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32830331

RESUMEN

Groupers are popular aquaculture species in South-East Asia, but their cultivation is affected by infectious disease outbreaks. Mucosa-associated lymphoid tissues provide a first-line defence against pathogens; however, few studies are available relating to cellular or proteomic responses of mucosal immunity in grouper. Skin, gill and intestine were sampled from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål, 1775) at 4 and 96 hr post-infection (hpi) and 7 days post-infection (dpi) following intraperitoneal infection with Vibrio harveyi, and stained with haematoxylin/eosin and Alcian Blue/periodic acid-Schiff. Skin mucus was analysed by 2D-gel electrophoresis, and proteins modulated by the bacterial infection identified. In the infected fish, significant increases in sacciform cells in skin and increased levels of nucleoside diphosphate kinase in mucus were detected at 4 hpi. At 96 hpi, goblet cells containing acidic mucins significantly increased in the intestine, while those containing mixed mucins increased in skin and gills of infected fish. Proteasome subunit alpha type-I and extracellular Cu/Zn superoxide dismutase levels also increased in mucus. Rodlet and mast cells did not appear to respond to the infection. Mucosal tissues of grouper appeared actively involved in response to Vibrio infection. This information may help future research on improving grouper health, production and vaccine development.


Asunto(s)
Lubina/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Mucosa , Vibriosis/veterinaria , Animales , Lubina/microbiología , Enfermedades de los Peces/microbiología , Células Caliciformes/microbiología , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Moco , Proteoma , Vibrio , Vibriosis/inmunología
9.
Annu Rev Biochem ; 89: 769-793, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32243763

RESUMEN

Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glicocálix/química , Glicosiltransferasas/química , Células Caliciformes/química , Mucinas/química , Moco/química , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Expresión Génica , Glicocálix/metabolismo , Glicosilación , Glicosiltransferasas/clasificación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucinas/clasificación , Mucinas/genética , Mucinas/metabolismo , Moco/metabolismo , Moco/microbiología , Simbiosis/fisiología
10.
Sci Rep ; 10(1): 2232, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042047

RESUMEN

Microbial dysbiosis has long been postulated to be associated with the pathogenesis of inflammatory bowel disease (IBD). Although evidence supporting the anti-colitic effects of melatonin have been accumulating, it is not clear how melatonin affects the microbiota. Herein, we investigated the effects of melatonin on the microbiome in colitis and identified involvement of Toll-like receptor (TLR) 4 signalling in the effects. Melatonin improved dextran sulfate sodium (DSS)-induced colitis and reverted microbial dysbiosis in wild-type (WT) mice but not in TLR4 knockout (KO) mice. Induction of goblet cells was observed with melatonin administration, which was accompanied by suppression of Il1b and Il17a and induction of melatonin receptor and Reg3ß, an antimicrobial peptide (AMP) against Gram-negative bacteria. In vitro, melatonin treatment of HT-29 intestinal epithelial cells promotes mucin and wound healing and inhibits growth of Escherichia coli. Herein, we showed that melatonin significantly increases goblet cells, Reg3ß, and the ratio of Firmicutes to Bacteriodetes by suppressing Gram-negative bacteria through TLR4 signalling. Our study suggests that sensing of bacteria through TLR4 and regulation of bacteria through altered goblet cells and AMPs is involved in the anti-colitic effects of melatonin. Melatonin may have use in therapeutics for IBD.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Melatonina/administración & dosificación , Receptor Toll-Like 4/metabolismo , Animales , Bacteroidetes/efectos de los fármacos , Bacteroidetes/inmunología , Bacteroidetes/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/microbiología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Disbiosis/inmunología , Disbiosis/microbiología , Disbiosis/patología , Firmicutes/efectos de los fármacos , Firmicutes/inmunología , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/inmunología , Células Caliciformes/inmunología , Células Caliciformes/microbiología , Células Caliciformes/fisiología , Células HT29 , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/inmunología , Proteínas Asociadas a Pancreatitis/metabolismo , Receptores de Melatonina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética
11.
J Exp Med ; 216(11): 2602-2618, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31420376

RESUMEN

The inner mucus layer (IML) is a critical barrier that protects the colonic epithelium from luminal threats and inflammatory bowel disease. Innate immune signaling is thought to regulate IML formation via goblet cell Nlrp6 inflammasome activity that controls secretion of the mucus structural component Muc2. We report that isolated colonic goblet cells express components of several inflammasomes; however, analysis of IML properties in multiple inflammasome-deficient mice, including littermate-controlled Nlrp6-/- , detect a functional IML barrier in all strains. Analysis of mice lacking inflammasome substrate cytokines identifies a defective IML in Il18-/- mice, but this phenotype is ultimately traced to a microbiota-driven, Il18-independent effect. Analysis of phenotypic transfer between IML-deficient and IML-intact mice finds that the Bacteroidales family S24-7 (Muribaculaceae) and genus Adlercrutzia consistently positively covary with IML barrier function. Together, our results demonstrate that baseline IML formation and function is independent of inflammasome activity and highlights the role of the microbiota in determining IML barrier function.


Asunto(s)
Colon/inmunología , Células Caliciformes/inmunología , Inflamasomas/inmunología , Mucosa Intestinal/inmunología , Moco/inmunología , Receptores de Superficie Celular/inmunología , Animales , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal/inmunología , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Inflamasomas/genética , Inflamasomas/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mucina 2/inmunología , Mucina 2/metabolismo , Moco/metabolismo , Moco/microbiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/inmunología
12.
Artículo en Inglés | MEDLINE | ID: mdl-31024858

RESUMEN

Salmonella effectors translocated into epithelial cells contribute to the pathogenesis of infection. They mediate epithelial cell invasion and subsequent intracellular replication. However, their functions in vivo have not been well-identified. In this study, we uncovered a role for Salmonella outer protein B (SopB) in modulating necroptosis to facilitate bacteria escape epithelial cell and spread to systemic sites through a Salmonella-induced colitis model. Mice infected with SopB deleted strain ΔsopB displayed increased severity to colitis, reduced mucin expression and increased bacterial translocation. In vitro study, we found there was an increased goblet cell necroptosis following ΔsopB infection. Consistently, mice infected with ΔsopB had a strong upregulation of mixed lineage kinase domain-like (MLKL) phosphorylation. Deletion of MLKL rescued severity of tissue inflammatory, improved mucin2 expression and abolished the increased bacterial translocation in mice infected with ΔsopB. Intriguingly, the expression of sopB in LS174T cells was downregulated. The temporally regulated SopB expression potentially switched the role from epithelial cell invasion to bacterial transmission. Collectively, these results indicated a role for SopB in modulating the onset of necroptosis to increased bacteria pathogenesis and translocated to systemic sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Necroptosis/efectos de los fármacos , Infecciones por Salmonella/patología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Traslocación Bacteriana , Línea Celular , Colitis/microbiología , Colitis/patología , Modelos Animales de Enfermedad , Eliminación de Gen , Células Caliciformes/microbiología , Células Caliciformes/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Virulencia/deficiencia
13.
Mol Nutr Food Res ; 62(22): e1800552, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30198100

RESUMEN

SCOPE: The intestinal mucosal barrier, including the mucus layer, protects against invasion of enteropathogens, thereby inhibiting infection. In this study, the protective effect of Lactobacillus on the intestinal barrier against Salmonella infection is investigated. The underlying mechanism of its effect, specifically on the regulation of goblet cells through the Notch pathway, is also elucidated. METHODS AND RESULTS: Here, the protective effect of Lactobacillus on alleviating changes in the intestinal barrier caused by Salmonella infection is explored. It has been found that Salmonella typhimurium colonizes the colon and damages colonic mucosa. However, Lactobacillus acidophilus ATCC 4356 alleviates the colitis caused by Salmonella infection. Moreover, S. typhimurium infection causes colonic crypt hyperplasia with increased PCNA+ cells, while L. acidophilus administration resolves these pathological changes. In addition, it has been further demonstrated that Salmonella results in severe colitis associated with goblet cells, and Lactobacillus improves colitis similarly associated with goblet cells. Salmonella infection induces goblet cell loss and reduces MUC2 expression by increasing Dll1, Dll4, and HES1 expression, while L. acidophilus reverses epithelial damage by balancing the Notch pathway. CONCLUSION: The study demonstrates that colitis improvement is controlled by Lactobacillus ATCC 4356 by regulation of the Notch pathway; this finding will be useful for prevention against animal S. typhimurium infection.


Asunto(s)
Colitis/terapia , Células Caliciformes/microbiología , Lactobacillus acidophilus , Receptores Notch/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Colitis/microbiología , Colitis/patología , Colon/microbiología , Colon/patología , Femenino , Regulación de la Expresión Génica , Mucosa Intestinal/microbiología , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Mucina 2 , Infecciones por Salmonella/prevención & control
14.
Neurogastroenterol Motil ; 30(5): e13264, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29266818

RESUMEN

BACKGROUND: The intestinal mucosa plays an important role in the mechanical barrier against pathogens. During Toxoplasma gondii infection, however, the parasites invade the epithelial cells of the small intestine and initiate a local immune response. In the submucosal plexus, this response promotes an imbalance of neurotransmitters and induces neuroplasticity, which can change the integrity of the epithelium and its secretory function. This study evaluated the submucosal neurons throughout acute T. gondii infection and the relationship between possible alterations and the epithelial and immune defense cells of the mucosa. METHODS: Forty Wistar rats were randomly assigned to 8 groups (n = 5): 1 control group, uninfected, and 7 groups infected with an inoculation of 5000 sporulated T. gondii oocysts (ME-49 strain, genotype II). Segments of the ileum were collected for standard histological processing, histochemical techniques, and immunofluorescence. KEY RESULTS: The infection caused progressive neuronal loss in the submucosal general population and changed the proportion of VIPergic neurons throughout the infection periods. These changes may be related to the observed reduction in goblet cells that secret sialomucins and increase in intraepithelial lymphocytes after 24 hours, and the increase in immune cells in the lamina propria after 10 days of infection. The submucosa also presented fibrogenesis, characterizing injury and tissue repair. CONCLUSIONS AND INFERENCES: The acute T. gondii infection in the ileum of rats changes the proportion of VIPergic neurons and the epithelial cells, which can compromise the mucosal defense during infection.


Asunto(s)
Células Caliciformes/metabolismo , Íleon/metabolismo , Linfocitos Intraepiteliales/metabolismo , Neuronas/metabolismo , Toxoplasmosis/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Recuento de Células , Muerte Celular/fisiología , Células Caliciformes/microbiología , Células Caliciformes/patología , Íleon/microbiología , Íleon/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Linfocitos Intraepiteliales/microbiología , Linfocitos Intraepiteliales/patología , Masculino , Plexo Mientérico/metabolismo , Plexo Mientérico/microbiología , Plexo Mientérico/patología , Neuronas/microbiología , Neuronas/patología , Ratas , Ratas Wistar , Toxoplasma , Toxoplasmosis/microbiología , Toxoplasmosis/patología
15.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G360-G377, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122749

RESUMEN

Goblet cells (GCs) are the predominant secretory epithelial cells lining the luminal surface of the mammalian gastrointestinal (GI) tract. Best known for their apical release of mucin 2 (Muc2), which is critical for the formation of the intestinal mucus barrier, GCs have often been overlooked for their active contributions to intestinal protection and host defense. In part, this oversight reflects the limited tools available to study their function but also because GCs have long been viewed as relatively passive players in promoting intestinal homeostasis and host defense. In light of recent studies, this perspective has shifted, as current evidence suggests that Muc2 as well as other GC mediators are actively released into the lumen to defend the host when the GI tract is challenged by noxious stimuli. The ability of GCs to sense and respond to danger signals, such as bacterial pathogens, has recently been linked to inflammasome signaling, potentially intrinsic to the GCs themselves. Moreover, further work suggests that GCs release Muc2, as well as other mediators, to modulate the composition of the gut microbiome, leading to both the expansion as well as the depletion of specific gut microbes. This review will focus on the mechanisms by which GCs actively defend the host from noxious stimuli, as well as describe advanced technologies and new approaches by which their responses can be addressed. Taken together, we will highlight current insights into this understudied, yet critical, aspect of intestinal mucosal protection and its role in promoting gut defense and homeostasis.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Microbioma Gastrointestinal , Células Caliciformes/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/fisiopatología , Células Caliciformes/metabolismo , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatología , Mucina 2/metabolismo , Moco/metabolismo , Transducción de Señal
16.
mBio ; 8(5)2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974617

RESUMEN

Intestinal mucus secretion is critical in maintaining mucosal host defense against a myriad of pathogens by preventing direct association with the epithelium. Entamoeba histolytica specifically binds colonic MUC2 mucin and also induces potent hypersecretion from goblet cells; however, characterization of the nature of the mechanisms controlling mucus release remains elusive. In this report, we identify vesicle SNARE vesicle-associated membrane protein 8 (VAMP8) present on mucin granules as orchestrating regulated exocytosis in human goblet cells in response to the presence of E. histolytica VAMP8 was specifically activated during E. histolytica infection, and ablation of VAMP8 led to impaired mucin secretion. As a consequence, loss of VAMP8 increased E. histolytica adherence to epithelial cells associated with enhanced cell death through apoptosis characterized by caspase 3 and 9 cleavages and DNA fragmentation. With the mucosal barrier compromised in Vamp8-/- animals, E. histolytica induced an aggressive proinflammatory response with elevated levels of interleukin-1 alpha (IL-1α), IL-1ß, and tumor necrosis factor alpha (TNF-α) secretion. This report is the first to characterize regulated mucin exocytosis in intestinal goblet cells in response to a pathogen and the downstream consequences of improper mucin secretion in mucosal barrier defense.IMPORTANCE The intestinal tract is exposed to countless substances and pathogens, and yet homeostasis is maintained, in part by the mucus layer that houses the microbiota and spatially separates potential threats from the underlying single layer of epithelium. Despite the critical role of mucus in innate host defense, characterization of the mechanisms by which mucus is secreted from specialized goblet cells in the gut remains elusive. Here, we describe the machinery that regulates mucus secretion as well as the consequence during infection with the colonic pathogen Entamoeba histolytica Abolishment of the key machinery protein VAMP8 abrogated mucus release in cultured human colonic goblet cells and during E. histolytica infection in Vamp8-/- mice, which showed enhanced amoeba contact and killing of epithelial cells, triggering a potent proinflammatory response. This report highlights the importance of the VAMP8 secretory machinery in facilitating mucus release from intestinal goblet cells and the dire consequences that occur during disease pathogenesis if these pathways are not functional.


Asunto(s)
Entamoeba histolytica/fisiología , Exocitosis , Células Caliciformes/fisiología , Inmunidad Innata , Mucinas/metabolismo , Proteínas R-SNARE/metabolismo , Animales , Línea Celular , Entamoeba histolytica/patogenicidad , Células Epiteliales , Células Caliciformes/microbiología , Ratones , Mucina 2/metabolismo , Proteínas R-SNARE/deficiencia , Proteínas R-SNARE/genética
17.
Future Microbiol ; 12: 1449-1455, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29068234

RESUMEN

AIM: To compare the protective efficacy of gelatine tannate/probiotic with other antidiarrheal agents in Escherichia coli-inoculated CacoGoblet® cells. METHODS: Four test compounds - gelatine tannate plus inactivated probiotic, diosmectite, probiotic mixture and Saccharomyces boulardii - were added to E. coli-infected CacoGoblet cells. After 1 and 24 h, transepithelial electrical resistance was measured and a lucifer yellow assay performed. RESULTS: Gelatine tannate/probiotic markedly increased transepithelial electrical resistance by 123.1% (at 1 h) and 149.5% (at 24 h), and produced paracellular flux values of 0.41% (1 h) and 1.34% (24 h), which were considerably less than the E. coli-invasion value (2.41%). CONCLUSION: The protective efficacy of gelatine tannate/probiotic against E. coli-induced reduction of membrane integrity manifests early and is maintained for 24 h.


Asunto(s)
Antidiarreicos/farmacología , Diarrea/tratamiento farmacológico , Infecciones por Escherichia coli/tratamiento farmacológico , Modelos Biológicos , Permeabilidad , Probióticos/farmacología , Línea Celular , Diarrea/microbiología , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Infecciones por Escherichia coli/microbiología , Gelatina/farmacología , Células Caliciformes/microbiología , Células Caliciformes/fisiología , Humanos , Silicatos/farmacología , Taninos/farmacología
18.
Gut Microbes ; 8(4): 400-411, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28267403

RESUMEN

Bacterial translocation is defined as the passage of live bacteria from the gut lumen to distant sites. Gut commensal bacteria translocation has been attributed to 'leakiness', or 'barrier breach' of the intestinal epithelium, allowing live bacteria to cross an inappropriately permeable barrier and disseminate to distant sites. Alternatively, studies suggest dendritic cells directly capture luminal commensal bacteria and transport them to distant sites in the steady-state by extending dendrites between epithelial cells into the lumen. Recently we identified translocation of commensal gut bacteria following antibiotics was associated with the formation of goblet cell associated antigen passages (GAPs) in the colon and dependent upon goblet cells (GCs). The translocation of native gut commensal bacteria resulted in low-level inflammatory responses and potentiated mucosal damage in response to concurrent epithelial injury. Here we extend these observations and demonstrate properties of colonic GAPs and observations supporting their priority in the translocation of colonic commensal bacteria.


Asunto(s)
Antibacterianos/farmacología , Traslocación Bacteriana/efectos de los fármacos , Colon/microbiología , Células Caliciformes/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Colon/efectos de los fármacos , Colon/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Células Caliciformes/citología , Células Caliciformes/efectos de los fármacos , Humanos
19.
Int J Med Microbiol ; 306(8): 657-665, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27670078

RESUMEN

Vibrio cholera survival in an aquatic environment depends on chitin utilization pathway that requires two factors, chitin binding protein and chitinases. The chitinases and the chitin utilization pathway are regulated by a two-component sensor histidine kinase ChiS in V. cholerae. In recent studies these two factors are also shown to be involved in V. cholerae pathogenesis. However, the role played by their upstream regulator ChiS in pathogenesis is yet to be known. In this study, we investigated the activation of ChiS in presence of mucin and its functional role in pathogenesis. We found ChiS is activated in mucin supplemented media. The isogenic chiS mutant (ChiS-) showed less growth compared to the wild type strain (ChiS+) in the presence of mucin supplemented media. The ChiS- strain also showed highly retarded motility as well as mucin layer penetration in vitro. Our result also showed that ChiS was important for adherence and survival in HT-29 cell. These observations indicate that ChiS is activated in presence of intestinal mucin and subsequently switch on the chitin utilization pathway. In animal models, our results also supported the in vitro observation. We found reduced fluid accumulation and colonization during infection with ChiS- strain. We also found ChiS- mutant with reduced expression of ctxA, toxT and tcpA. The cumulative effect of these events made V. cholerae ChiS- strain hypovirulent. Hence, we propose that ChiS plays a vital role in V. cholerae pathogenesis.


Asunto(s)
Histidina Quinasa/metabolismo , Vibrio cholerae/patogenicidad , Factores de Virulencia/metabolismo , Animales , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Línea Celular , Toxina del Cólera/metabolismo , Medios de Cultivo/química , Proteínas Fimbrias/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Células Caliciformes/microbiología , Histidina Quinasa/genética , Humanos , Locomoción , Ratones , Viabilidad Microbiana , Mucinas/metabolismo , Conejos , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Vibrio cholerae/crecimiento & desarrollo
20.
Gut Microbes ; 7(5): 414-23, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27459363

RESUMEN

Doxorubicin (DOXO) induces significant, but transient, increases in apoptosis in the stem cell zone of the jejunum, followed by mucosal damage involving a decrease in crypt proliferation, crypt number, and villus height. The gastrointestinal tract is home to a vast population of commensal bacteria and numerous studies have demonstrated a symbiotic relationship between intestinal bacteria and intestinal epithelial cells (IEC) in maintaining homeostatic functions of the intestine. However, whether enteric bacteria play a role in DOXO-induced damage is not well understood. We hypothesized that enteric bacteria are necessary for induction of apoptosis and damage associated with DOXO treatment. Conventionally raised (CONV) and germ free (GF) mice were given a single injection of DOXO, and intestinal tissue was collected at 6, 72, and 120 h after treatment and from no treatment (0 h) controls. Histology and morphometric analyses quantified apoptosis, mitosis, crypt depth, villus height, and crypt density. Immunostaining for muc2 and lysozyme evaluated Paneth cells, goblet cells or dual stained intermediate cells. DOXO administration induced significant increases in apoptosis in jejunal epithelium regardless of the presence of enteric bacteria; however, the resulting injury, as demonstrated by statistically significant changes in crypt depth, crypt number, and proliferative cell number, was dependent upon the presence of enteric bacteria. Furthermore, we observed expansion of Paneth and goblet cells and presence of intermediate cells only in CONV and not GF mice. These findings provide evidence that manipulation and/or depletion of the enteric microbiota may have clinical significance in limiting chemotherapy-induced mucositis.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Bacterias/efectos de los fármacos , Doxorrubicina/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Animales , Antibióticos Antineoplásicos/administración & dosificación , Bacterias/genética , Bacterias/aislamiento & purificación , Doxorrubicina/administración & dosificación , Femenino , Vida Libre de Gérmenes , Células Caliciformes/efectos de los fármacos , Células Caliciformes/microbiología , Intestinos/citología , Ratones , Ratones Endogámicos C57BL , Células de Paneth/efectos de los fármacos , Células de Paneth/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...